首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   4篇
工业技术   69篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   9篇
  2010年   5篇
  2009年   2篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1976年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
21.
A simple and reproducible technique for constructing perfectly aligned gaps in fused-silica capillaries has been developed for postcolumn reagent addition with capillary electrophoresis. This technique uses laser ablation with the second harmonic of a Nd:YAG laser (532 nm) at 13.5 mJ/pulse and a repetition rate of 15 Hz to create these gaps. A capillary is glued to a microscope slide and positioned at the focal point of a cylindrical lens using the focused beam from a laser pointer as a reference. Gaps of 14.0 +/- 2.2 microm (n = 33) at the bore of the capillary are produced with a success rate of 94% by ablation with 400 pulses. This simple method of gap construction requires no micromanipulation under a microscope, hydrofluoric acid etching, or use of column fittings. These structures have been used for reagent addition for postcolumn derivatization with laser-induced fluorescence detection and have been tested for the separation of proteins and amino acids. Detection limits of 6 x 10(-7) and 1 x 10(-8) M have been obtained for glycine and tranferrin, respectively. Separation efficiencies obtained using these gap reactors range from 38,000 to 213,000 theoretical plates.  相似文献   
22.
Lake Alemaya in the Ethiopian Highlands has historically provided the surrounding area with water for domestic use, irrigation, and livestock and has served as a local fishery tank. Increasing irrigation and domestic water use, change in the local climate and changes in the surrounding land cover are believed to be the causes of Lake Alemaya’s demise. Expansion of major irrigated crops in particular chat (Catha Edulis), potato and vegetables and non-judicious use of irrigation water in the Lake Alemaya watershed led to presumption that irrigation is partly responsible for the withdrawal of large quantity of water from the lake. Thus, water balance study of Lake Alemaya was carried out under presumed scenarios in order to study the possible trends and fluctuations of the lake water level in response to proposed scenarios. Further, it is essential to study the irrigation performance for developing optimal irrigation schedules in the study area to make the best use of available water for long term sustainability of the water resources of Lake Alemaya. It was identified that expansion of the irrigated area in general and chat cultivation in particular in the study area have been the key to sustainable management of lake water, hence its expansion during the past 37 years (1965–2002) was studied through interpretation of satellite data. Subsequently, performance evaluation of the small-scale irrigation practices for major irrigated crops was carried out. Optimal irrigation schedules for different crop seasons were also developed for these irrigated crops using CROPWAT software. It was found that chat area increased from 190 ha in 1996 to nearly 330 ha in 2002. Further, it was observed that 43% surface area of the lake has reduced within a span of 37 years. Overall, maximum irrigation intensity of chat, potato and vegetables is observed during the first irrigation season of the crop calendar. Particularly, in case of chat, irrigation performance indicators such as Relative Water Supply (RWS), Relative Irrigation Supply (RIS), Depleted Fraction (DF) and Overall Consumed Ratio (OCR) values indicated poor performance of irrigation practices. From the analysis, it was found that the application of a fixed irrigation depth and fixed irrigation interval combinations of (25 mm—25 day), (20 mm—20 day), or (20 mm—25 day) are recommended for chat in the study area. Optimal irrigation schedules were decided on the basis of combination of irrigation interval and depth that results in low loss of irrigation water with reasonable yield reduction. Thus, determination of appropriate water management strategy can ensure proper utilization of the available water resources and improve the water application efficiency of the small-scale irrigation practices around Lake Alemaya, Ethiopia.  相似文献   
23.
Oxygen reduction electrodes, containing non-noble metal catalysts supported on high surface area carbon and wet-proofed with PTFE were tested under reaction conditions for the chlor-alkali electrolysis. Double-layer gas diffusion electrodes were prepared by rolling of an active layer and diffusion layer on a nickel wire screen, compressed and sintered at 300 °C. Electrochemical measurements for substantiating the activity and stability of the half-cells were conducted in 8 M NaOH by supplying oxygen at a cell temperature of 70 °C and a constant current load of 300 mA cm−2. An electrolysis cell with a dimensionally stable anode (DSA) and double-layered cathode was assembled, where 4.8 M NaCl and oxygen were supplied, respectively, for the production of chlorine and NaOH. The cell performances as well as stability of the electrodes were investigated at about 80 °C. This study shows that by replacing the high voltage consuming hydrogen-evolving reaction and by adopting highly active electrocatalysts as cathode materials, energy savings of more than 30% could be realized.  相似文献   
24.
25.
The photoelectrochemical properties of all-solid-state photoelectrochemical cell constructed from a conjugated polymer poly[3-(4-octylphenyl)thiophene] and an amorphous poly(ethylene oxide) complexed with iodide/triiodide redox couple were studied. In order to develop flexible photoelectrochemical cells, we have used a transparent polymeric metal, doped poly(3,4-ethylenedioxythiophene), as a counter electrode. It was shown that poly(3,4-ethylenedioxythiophene) improved the charge transfer between indium tin-oxide and iodide/triiodide redox couple. The spectral response, photocurrent time, and open-circuit voltage and short-circuit current dependence on light intensity have been studied. The photon to electron conversion efficiency obtained was low. The photocurrent and photovoltage dependence studies on light intensity indicate exciton recombination and/or traps as limiting factors.  相似文献   
26.
Effective integrated water resources management requires reliable estimation of an overall basin water budget and of hydrologic fluctuations between groundwater and surface‐water resources. Seasonal variability of groundwater‐surface water exchange fluxes impacts on the water balance. The long term lake water balance was calculated by Modflow using the stage‐volume rating curve of Lake Package LAK3. The long term average storage volume change is 8.4 × 108 m3/month. The lake water balances suggests that the lake is not in equilibrium with the inflow and outflow terms. Using field abstraction data analysis and model simulation, the combined volume of lake‐groundwater used for industrial abstraction since the last three decades was estimated. This requires an average abstraction amount of 7.0 × 106 m3/month with a long term trend of abstraction ratio 30% (groundwater) and 70% (lake water) since 1980. The amount resulted in a lake which might have been 4.8 m higher than was observed in the last stress period (2010). A long term regional groundwater budget is calculated reflecting all water flow in to and out of the regional aquifer. The model water balance suggests that lake Navaisha basin is in equilibrium with a net outflow about 1% greater than the inflow over the calibrated period of time (1932–2010). The regional model is best used for broad‐scale predictions and can be used to provide a general sense of groundwater to surface water and groundwater to groundwater impacts in the basin. A basin wide water resource management strategy can be designed by integrating the lake/wetland within the regional groundwater model to increase the level of sustainable production and good stewardship in Lake Navaisha. Such hydrological analysis is crucial in making the model serve as simulator of the response of lake stage to hydraulic stresses applied to the aquifer and variation in climatic condition.  相似文献   
27.
This paper presents an estimation and control scheme for a class of industrial processes described by distributed parameter models with a moving radiant actuator. To overcome the lack of direct sensing alternatives for process state, a dual extended Kalman filter is established for estimating process status online based on a reduced process model and available output measurements. A distinct challenge that is addressed is the selection and construction of a suitable feedback signal from the distributed state estimate following the moving radiant actuator. The estimated status is then integrated into a rule-based feedback controller, which coordinates two manipulated variables of the moving radiant actuator to achieve the control objective. The two manipulated variables are the velocity and the radiant flux or power of the moving actuator. Both the estimation and feedback control strategies are demonstrated using computer simulations of one-dimensional distributed parameter models for an ultraviolet (UV) coating curing process involving a moving UV source. The results show that the proposed estimation and control schemes can significantly improve process quality and compensate for unknown disturbances on the target.  相似文献   
28.
Biofuels are renewable solutions to replace the ever dwindling energy reserves and environmentally pollutant fossil liquid fuels when they are produced from low cost sustainable feedstocks. Biodiesel is mainly produced from vegetable oils or animal fats by the method of transesterification reaction using catalysts. Homogeneous catalysts are conventionally used for biodiesel production. Unfortunately, homogeneous catalysts are associated with problems which might increase the cost of production due to separation steps and emission of waste water. Inorganic heterogeneous catalysts are potentially low cost and can solve many of the problems encountered in homogeneous catalysts. Many solid acid and base inorganic catalysts have been studied for the transesterification of various vegetables oils. The work of many researchers on the development of active, tolerant to water and free fatty acids (FFA), as well as stable inorganic catalysts for biodiesel production from vegetable oils are reviewed and discussed.  相似文献   
29.
Polymeric microfluidic chips are an enabling component for cost-effective, point of care analytical devices for pharmaceutical, agriculture, health, biological and medical applications. The microfluidic structures can be completed with active elements like pumps and valves as well as sensor components for more complex so called total analysis systems. Often, systems are designed as reader and disposable cartridge where the fluidic structures are simple devices that will be inserted into the reader, which executes the analytical protocol and displays the information in digital form, and disposed after completion of the analysis. In this paper, a hybrid fabrication approach was employed to build a polymeric microfluidic device, so-called sweatstick, suitable for collecting small, precise amounts (600 μl) of human sweat, which were further analyzed for the amount of calcium ions indicating bone mass loss. The device was assembled from different parts fabricated by ultra deep X-ray lithography, precision micro-milling, and molding. Surface treatment of liquid exposed surfaces by oxygen plasma ensures hydrophilic behavior and proper capillary action. Preliminary testing of the device was performed by collecting defined amounts of sweat simulant and determining the calcium ion content using a fluorescent technique. The results for low calcium ion concentration typical for human sweat were excellent and repeatable with variation less than 5% demonstrating the ability to perform indirect bone loss measurements.  相似文献   
30.
Various tests are used to characterise the strength and resilience of granular materials used in the subbase of a pavement system, but there is a limited understanding of how particle properties relate to the bulk material response under various test conditions. Here, we use discrete element method (DEM) simulations with a mechanistically based contact model to explore influences of the material properties of the particle on the results of two such tests: the dynamic cone penetrometer (DCP) and the resilient modulus tests. We find that the measured resilient modulus increases linearly with the particle elastic modulus, whereas the DCP test results are relatively insensitive to particle elastic modulus. The DCP test results are also relatively insensitive to inter-particle friction coefficient but strongly dependent on the particle shape. We discuss strengths and weaknesses of our modelling approach and include suggestions for future improvements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号